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∗ École des Mines d’Albi-Carmaux

Campus Jarlard, Route de Teillet, 81013 Albi CT Cedex 09

France

∗∗ Instituto Superior Técnico
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Abstract

Accurate solutions for benchmarking purposes in two-dimensional axisymmetric enclosures

with reflective surfaces have been obtained using the Monte Carlo method (MCM) based on the

net exchange formulation (NEF). Previous applications of the MCM-NEF have been restricted to

multidimensional problems with black boundaries or one-dimensional problems with grey bound-

aries. Here, the extension to multidimensional enclosures with grey boundaries is presented. The

medium is a mixture of H2O, CO2, N2 and soot at atmospheric pressure, and its radiative proper-

ties are computed using the correlated k-distribution method. Predictions obtained using the dis-

crete ordinates method are included, showing a good agreement with the benchmark MCM/NEF

solutions.
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Nomenclature
A area of cell faces (DOM)

fv soot volumetric fraction

F directional probability density function for reflexion

g cumulative distribution function of the absorption coefficient

Iη spectral radiation intensity

L length

M number of directions

Nb number of narrow bands

NQ number of quadrature points (CK method)

Ns number of surfaces

Nv number of volumes

pn probability of band number n

q heat flux vector

r radial coordinate

r position vector

R radius

S surface

u direction vector

V volume or cell volume

wm DOM quadrature weight for direction m

wk DOM quadrature weight for CK method

W Monte Carlo integration weight

x axial coordinate
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Greek symbols

α absorptivity

αm curvature coefficient of angular redistribution (DOM)

β direction cosine

Γ visibility factor

ε accuracy

ε emissivity

δ Dirac function

η wave number

θ angle between direction u and normal to a surface

κ absorption coefficient

µ direction cosine

ξ direction cosine

σ length

τij spectral transmissivity from point Pi to point Pj

ϕ(Si, Sj) net radiative exchange between surfaces Si and Sj

ϕ(Si, Vj) net radiative exchange between surface Si and volume Vj

ϕ(Vi, Sj) net radiative exchange between volume Vi and surface Sj

ϕ(Vi, Vj) net radiative exchange between volumes Vi and Vj

ω solid angle

Subscripts

w wall

Superscripts

m direction

0 blackbody

mean value
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1 Introduction

In these last decades, numerous authors have pointed out the importance of radiative heat trans-

fer in combustion systems such as diesel engines, boilers, furnaces, rocket engines and many other

practical applications which involve high temperatures and large scales [1, 2]. Only few ana-

lytical or quasi-exact solutions are available in the literature for simple geometries such as two-

dimensional rectangular/axisymmetrical and three-dimensional rectangular enclosures with gray

media. Accurate results of multi-dimensional non-gray radiation analysis of real gases is typically

lacking. That is mainly due to the unacceptable computing time required by the detailed models of

gaseous radiation calculations in multi-dimensions. Considering this state of the art, a first bench-

mark numerical solution has been proposed recently by Coelho et al. [3], for two-dimensional

black enclosures with non-gray sooting media. The aim of the present paper is to extend this work

to enclosures bounded by gray diffuse and specular walls. When using the MCM with a net ex-

change formulation, it is not possible any more to rely on the physical pictures of photon statistical

transport to derive the algorithm. It is required that the algorithm is rigorously justified by a com-

plete formulation work. This was only done with reflexion in [4] for 1D geometries in a way that

could not be simply extended to complex geometries. It is therefore the first time that the extension

of Net-Exchange MCM to reflexion in any geometry is presented for publication. A new formu-

lation of the MCM-NEF (Monte Carlo-Net Exchange Formulation) involving diffuse and specular

walls is detailed in the section devoted to the theoretical methods. The results presented in the

last section are useful in evaluating the accuracy of other approximate numerical methods such

as the DOM ( Discrete Ordinates method) which remains adequate for most practical applications

[5, 6, 7].
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2 Theoretical methods

2.1 The Net Exchange Formulation and the Monte Carlo Method.

The many variants of the Monte Carlo method (MCM) are generally recognized as accurate

solution method (see for instance the review of J.R. Howell in [8]), and are commonly used for

benchmark purposes. Most of the techniques are presented as strict numerical implementations

of photon transport stochastic models and optimization efforts essentially concern the adaptation

of the random sampling procedures [9, 10]. However, these techniques based on standard photon

transport formulations frequently appeared to be not efficient and to require very large numbers

of statistical realizations for accurate solutions, when optical thicknesses are high, when config-

urations include hot spots, or at the opposite when temperature differences are small. Recently,

numerous research efforts have been undertaken to overcome these difficulties on the basis of op-

timized formulations [8, 11, 12, 13, 14, 4, 15, 16, 17]. Among such optimization techniques, the

MCM-NEF was shown to have many advantages in terms of statistical convergence, but a detailed

formulation procedure is strictly required for each extension to new application fields [4, 16, 18].

The Net Exchange Formulation (NEF) was originally proposed in [19] for monochromatic ra-

diative exchanges in the atmosphere, and later extended in [20] to narrow bands. It has some

similarities with the zone method, but it does not require that the surface and volume zones are

isothermal. In the field of thermal radiation, the Monte Carlo - Net Exchange Formulation method

was firstly applied to one-dimensional enclosures in [14]. In this method, the net radiative heat

exchanges between every volume-volume, surface-volume and surface-surface pair are calculated

using the Monte Carlo method for the computation of the integrals that appear in the definition of

the net radiative exchanges. One of the advantages of the MCM-NEF over the traditional MCM is

that it intrinsically satisfies the reciprocity principle and the energy conservation, which allows to

bypass convergence difficulties in the quasi-isothermal limit and in the optically thick limit [15].

The method was extended to two-dimensional Cartesian enclosures with black walls in [16] and to

one-dimensional enclosures with reflective surfaces in [4].A very recent work using this methodol-

ogy to address optically thick scattering was carried out by Eymet and al. in [18, 21]. Theoretical
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derivations are presented in sections 2.1.1, 2.1.2 and 2.1.3 that allow MCM-NEF applications to

multi-dimensional enclosures with reflective surfaces.

2.1.1 The mathematical formulation.

Let Pi be a point within volume Vi, and Q1 be a point on surface Si defined respectively by the

position vectors rPi
and rQ1

(Figure 1). The net radiative exchange between two volumes Vi and

Vj, ϕ(Vi,Vj), or a volume Vi and a surface Sj, ϕ(Vi,Sj), or a surface Si and a volume Vj , ϕ(Si,Vj), or

a surface Si and a surface Sj , ϕ(Si,Sj), are expressed as follows for black walls and non scattering

media:

ϕ(Vi,Vj) =

∫ ∞

0

dη

∫

Vi

dVi

∫

Vj

dVj
κiτijκj

σ2
ij

∆Iij (1)

ϕ(Vi,Sj) =

∫ ∞

0

dη

∫

Vi

dVi

∫

Sj

dSj
κiτij

σ2
ij

∆Iij (2)

ϕ(Si,Vj) =

∫ ∞

0

dη

∫

Si

dSi

∫

Vj

dVj
cos θiτijκj

σ2
ij

∆Iij (3)

ϕ(Si,Sj) =

∫ ∞

0

dη

∫

Si

dSi

∫

Sj

dSj
cos θiτij

σ2
ij

∆Iij (4)

A shortened notation is adopted for the optical properties κi, κj, τij where [κiτijκj] means

[κη(rPi
)τη(rpi

→ rPj
)κη(rPj

)]. The Planck function ∆Iij here is the difference of the black

body function taken at each point (for instance : ∆Iij = I0
η (rPi

) − I0
η (rPj

)). σij is the distance

between point Pi and point Pj.

Considering two volumes Vi and Vj, the net radiative exchange between them is expressed as a

multiple integral on the wave number η and on the considered volumes. In the Monte Carlo method,

the integrations are performed by generating a large number of rays, and each ray is defined by

a frequency, a first exchange point Pi, and a direction u0 supporting a solid angle ω0. This is

accomplished in terms of formulation by simple variable substitutions transforming for instance a

volume integration over Vj into a double integral over solid angle and over the intersecting segment

(see Fig. 1).
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ϕ(Vi,Vj) =

∫ ∞

0

dη

∫

Vi

dVi

∫

4π

dω0

[

Γj(rPi
, u0)

∫

σ0(rPi
,u0)

dσκiτijκj∆Iij

]

(5)

ϕ(Vi,Sj) =

∫ ∞

0

dη

∫

Vi

dVi

∫

4π

dω0

[

Γj(rPi
, u0)κiτij∆Iij

]

(6)

ϕ(Si,Vj) =

∫ ∞

0

dη

∫

Si

dSi

∫

2π

dω0

[

Γj(rPi
, u0)

∫

σ0(rPi
,u)

dσ cos θiτijκj∆Iij

]

(7)

ϕ(Si,Sj) =

∫ ∞

0

dη

∫

Si

dSi

∫

2π

dω0

[

Γj(rPi
, u0) cos θiτij∆Iij

]

(8)

For all the exchanges : Γj(rPi
, u0) = 1 if the optical path intersects the exchange area j (surface

Sj or volume Vj) and Γj(rPi
, u0) = 0 if not. At this step, still considering an exchange between

Vi and Vj , the volume Vj may be intercepted by the generated ray, defining a segment σ0(rPi
, u0)

inside Vj . The second exchange point is then chosen on this segment at curvilinear abscissa σ and

the exchange is able to be estimated for this ray.

The net radiative heat flux on a surface Si is then obtained by summing all radiative exchanges

between surface Si and all other surfaces and volumes of the system:

qw,net,i =
Nv
∑

j=1

ϕ(Si,Vj) +
Ns
∑

j=1

ϕ(Si,Sj) (9)

The radiative heat source for volume Vi is similarly:

∫

Vi

∇.qdVi =

Nv
∑

j=1

ϕ(Vi,Vj) +

Ns
∑

j=1

ϕ(Vi,Sj) (10)

2.1.2 Generalization of the NEF to multiple reflexions.

Multiple reflexions are now considered in the NEF. New terms appear compared with equa-

tions 5,6,7, and 8 in order to take into account the contribution of multiple reflexion rays in the net

exchanges (Figure 2).
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Exchange between two volumes

The net radiative exchange between two volumes is given by:

ϕ(Vi,Vj) =

∫ ∞

0

dη

∫

Vi

dVi

∫

4π

dω0

[

Γj(rPi
, u0)

∫

σ0(rPi
,u0)

dσκiτijκj∆Iij

+

∫

2π

dω1

[

Γj(rQ1
, u1)

∫

σ1(rQ1
,u1)

dσκiτijκj∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)

∫

σ2(rQ2
,u2)

dσκiτijκj∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(11)

ε1, ε2, . . . , stands for the directional emissivities at the reflexion points in directions −u0, −u1,

. . . (or the directional absorptivities in directions +u0, +u1, . . . ): ε1 = ε(rQ1
,−u0) = α(rQ1

, u0),

ε2 = ε(rQ2
,−u1) = α(rQ2

, u1).

F1(u1|u0), F2(u2|u1) are the reflexion phase functions at the successive reflexion points

(
∫

2π
F1(u1|u0)dω1 = 1). For a diffuse reflexion, ε1(u0) = ε1 (independent of direction) and

F1(u1|u0) = (u1.n(rQ1
))/π, and for a specular reflection, ε1(u0) = ε1 and F1(u1|u0) =

δ(u1 − sym(−u0, rQ1
)) where δ is the Dirac function and sym(−u0, rQ1

) is the direction sym-

metric to −u0 relatively to the outer normal vector of the surface.

In equation 11, the first line is similar to the expression of ϕ(Vi,Vj) for black walls (equation

5), and the contribution of the reflexions appear on the following lines of the equation. Physically,

after the first reflexion at point Q1, the ray propagates in a new direction u1, and may once again

intercept the volume Vj defining inside a new segment σ1(rQ1
, u1). The second line of equation

11 expresses the contribution of this new path to the net exchange between Vi and Vj. Reasoning

in term of NEF on the basis of this physical picture only requires to consider each defined optical

path as traveled both way from Vi to Vj and from Vj to Vi [4].

Altogether, the first line represents the contribution to ϕ(Vi,Vj) of all the optical paths between

Vi and Vj without reflexion. The second line represents the contribution of all the optical paths

after one reflexion, the third line stands for the contribution after two reflexions, and so on.

The subscript j is employed in κj, τij and ∆Iij for all the terms of equation 11, in each inte-

gral, but the reader should be aware that the meanings are different after each reflexion because the
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corresponding variables are taken at different points in different optical paths.

Exchange between a volume and a surface

Physical considerations are the same as for the exchange between two volumes, except that inte-

gration over σ0,σ1,σ2 (through the volume) is not required : exchanges only occur with surface

points. The first line of equation (12) is similar to the equation without reflexion (equation 6)

and supplementary contributions are expressed in the following lines, representing respectively the

energy exchanged between Vi and Sj after one, two, . . . reflexions.

ϕ(Vi,Sj) =

∫ ∞

0

dη

∫

Vi

dVi

∫

4π

dω0

[

Γj(rPi
, u0)κiτijε1∆Iij

+

∫

2π

dω1

[

Γj(rQ1
, u1)κiτijε2∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)κiτijε3∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(12)

The exchanges between a volume and a surface (equation 13), and between two surfaces (equation

14) given hereafter are obtained in the same way.

Exchange between a surface and a volume

ϕ(Si,Vj) =

∫ ∞

0

dη

∫

Si

dSi

∫

2π

dω0

[

Γj(rPi
, u0)

∫

σ0(rPi
,u0)

dσεi cos θiτijκj∆Iij

+

∫

2π

dω1

[

Γj(rQ1
, u1)

∫

σ1(rQ1
,u1)

dσεi cos θiτijκj∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)

∫

σ2(rQ2
,u2)

dσεi cos θiτijκj∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(13)
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Exchange between two surfaces

ϕ(Si,Sj) =

∫ ∞

0

dη

∫

Si

dSi

∫

2π

dω0

[

Γj(rPi
, u0)εi cos θiτijε1∆Iij

+

∫

2π

dω1

[

Γj(rQ1
, u1)εi cos θiτijε2∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)εi cos θiτijε3∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(14)

The wave number integration is carried out over narrow-bands ∆η according to the Statistical

Narrow Band model proposed by Malkmus [22], using a k-distribution reformulation [23] and a

correlated-k assumption for the representation of inhomogeneities [24]. In the correlated-k distri-

bution approach, frequencies are rearranged and the absorption spectrum κη is replaced with an

equivalent spectrum κg in which κ is a monotonous function of a pseudo frequency g. Practically

g is the cumulative of the k-distribution and each frequential integration over a narrow band ∆η

is transformed as
∫

∆η
dη . . . = ∆η

∫ 1

0
dg . . .. The shortened notation κiτijκj, for instance, now

stands for κg(rPi
)τg(rPi

→ rPj
)κg(rPj

). Then, from equations 11, 12, 13, 14, it yields:

ϕ(Vi,Vj) =

Nb
∑

n=1

∆ηn

∫ 1

0

dg

∫

Vi

dVi

∫

4π

dω0

[

Γj(rPi
, u0)

∫

σ0(rPi
,u0)

dσκiτijκj∆Iij

+

∫

2π

dω1

[

Γj(rQ1
, u1)

∫

σ1(rQ1
,u1)

dσκiτijκj∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)

∫

σ2(rQ2
,u2)

dσκiτijκj∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(15)

Where Nb is the total number of narrow bands. The parameters of the Malkmus model were taken

from the database given in [25] for 367 narrow bands of 25cm−1 width considering a spectral

range from 150cm−1 to 9300cm−1. The number of narrow bands has been extended to 800 in

order to take into account the whole spectral range from 0 to 20000cm−1 for soot radiation at high

frequencies for high temperatures.
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ϕ(Vi,Sj) =

Nb
∑

n=1

∆ηn

∫ 1

0

dg

∫

Vi

dVi

∫

4π

dω0

[

Γj(rPi
, u0)κiτijε1∆Iij

+

∫

2π

dω1

[

Γj(Q1
, u1)κiτijε2∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)κiτijε3∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(16)

ϕ(Si,Vj) =

Nb
∑

n=1

∆ηn

∫ 1

0

dg

∫

Si

dSi

∫

2π

dω0

[

Γj(rpi
, u0)

∫

σ0(rPi
,u)

dσεi cos θiτijκj∆Iij

+

∫

2π

dω1

[

Γj(rQ1
, u1)

∫

σ1(rQ1
,u1)

dσεi cos θiτijκj∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)

∫

σ2(rQ2
,u2)

dσεi cos θiτijκj∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(17)

ϕ(Si,Sj) =

Nb
∑

n=1

∆ηn

∫ 1

0

dg

∫

Si

dSi

∫

2π

dω0

[

Γj(rPi
, u0)εi cos θiτijε1∆Iij

+

∫

2π

dω1

[

Γj(rQ1
, u1)εi cos θiτijε2∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

dω2

[

Γj(rQ2
, u2)εi cos θiτijε3∆Iij(1 − ε1)F1(u1|u0)

× (1 − ε2)F2(u2|u1) + ...
]

]

]

(18)

2.1.3 Monte Carlo integrations

A Monte Carlo algorithm based on this formulation has been developed with the use of adapted

probability density functions (pdf) in order to optimize the number of sampling events and to

ensure a fast convergence, especially for optically thick media [15]. For instance, if pdf functions

are introduced in the net exchange between two volumes (equation 15), one obtains:
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ϕ(Vi,Vj) =

Nb
∑

n=1

∆ηnpn
1

pn

∫ 1

0

pdf(g)
1

pdf(g)
dg

∫

Vi

pdf(Vi)
1

pdf(Vi)
dVi

∫

4π

pdf(ω0)
1

pdf(ω0)
dω0

[

Γj(rPi
, u0)

∫

σ0(rPi
,u0)

pdf(σ0)
1

pdf(σ0)
dσ0

× κiτijκj∆Iij

+

∫

2π

pdf(ω1)
1

pdf(ω1)
dω1

[

Γj(rQ1
, u1)

∫

σ1(rQ1
,u1)

pdf(σ1)
1

pdf(σ1)
dσ1

× κiτijκj∆Iij(1 − ε1)F1(u1|u0)

+

∫

2π

pdf(ω2)
1

pdf(ω2)
dω2

[

Γj(rQ2
, u2)

∫

σ2(rQ2
,u2)

pdf(σ2)
1

pdf(σ2)
dσ2

× κiτijκj∆Iij(1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1) + ...
]

]

]

(19)

which may be presented as 1:

ϕ(Vi,Vj) =

Nb
∑

n=1

pn∆ηn

∫ 1

0

pdf(g)dg

∫

Vi

pdf(Vi)dVi

∫

4π

pdf(ω0)dω0

∫

pdf(σ0)dσ0 . . .

∫

4π

pdf(ωm)dωm

∫

pdf(σm)dσm . . .

[

W0,V V + W1,V V + W2,V V + . . . + Wm,V V + . . .

]

(20)

where Wm represents the Monte Carlo weight corresponding to optical paths with m reflexions:

W0,V V =
1

pn pdf(g)pdf(Vi)pdf(ω0)
× Γjκiτijκj∆Iij

pdf(σ0)
(21)

W1,V V =
1

pn pdf(g)pdf(Vi)pdf(ω0)
× Γjκiτijκj∆Iij(1 − ε1)F1(u1|u0)

pdf(σ1)pdf(ω1)
(22)

W2,V V =
1

pn pdf(g)pdf(Vi)pdf(ω0)

× Γjκiτijκj∆Iij(1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1)

pdf(σ2)pdf(ω1)pdf(ω2)
(23)

1Noting that
∫

4π
pdf(ωm)dωm ≡ 1 and

∫

pdf(σm)dσm ≡ 1, which allows to bring forward all integrals as an

infinite product corresponding to all potential reflexion events.
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Wm,V V =
1

pn pdf(g)pdf(Vi)pdf(ω0)
(24)

× Γjκiτijκj∆Iij(1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1) . . .Fm(um|um−1)

pdf(σm)pdf(ω1)pdf(ω2) . . . pdf(ωm)

In the same way, we can write the expression of ϕ(Vi,Sj), ϕ(Vi,Sj), ϕ(Si,Sj) (see appendix A).

Altogether, any optimized pdf set may be retained. The random sampling of each variable is

performed according to this pdf set (narrow band, g, ω0, σ0, ω1, σ1, ω2, σ2, . . . ) leading to the

definition of a multiple reflexion optical path and to the successive computations of all weights

W0 . . .Wm that are summed to obtain the total weight W = W1 + W2 + . . .Wm + . . .. This

procedure is reproduced for a large number of sampled optical paths and the addressed radiative

quantity is estimated as the average value of all W . Results presented in section 3 were obtained

using the same optimized pdf set as in [15]. Statistical uncertainties are systematically associated

to each result as for any Monte Carlo integration (see appendix C).

2.1.4 Truncation Error

The net radiative exchange expressions involve infinite sums over surface reflexions. Practi-

cally speaking a numerical truncation is therefore required. This truncation is performed here, as

in standard MCM algorithms, on the basis of a user-defined required accuracy ε. The multiple

reflexion optical path is constructed considering successive reflexions, until attenuation τij is such

that contributions of all further reflexions are lower than ε. The only specific point of MCM-NEF

algorithms is that when following a ray, the successive values of ∆Iij (the Planck function dif-

ference that appears in W0, W1, W2,. . . ) are only known when the second exchange point rPi
is

sampled. The truncation procedure therefore requires that an over-estimate of ∆Iij is introduced,

which may be taken as I0
η (Tmax)− I0

η (Tmin), where Tmax and Tmin are respectively the minimum and

the maximum temperatures in the system.
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2.2 Discrete Ordinates Method

Presently, the discrete ordinates method (DOM) [26, 27] is one of the most widely used radia-

tion models. This is mainly due to the satisfactory accuracy of the model for most practical appli-

cations along with its flexibility, moderate computational requirements, and simplicity of coupling

with CFD codes. The description of the method may be found in many publications, and there-

fore it is omitted here. However, the application of the DOM when the radiative properties of the

medium are calculated using the CK method is much less common. This has been described in [3],

and a short overview is given below for completeness.

In cylindrical coordinates (x, r, Ψ), the RTE for an emitting, absorbing and non-scattering

medium may be written as:

ξ
∂Iη

∂x
+

β

r

∂(rIη)

∂r
− 1

r

∂(µIη)

∂Ψ
= −κηIη + κηI

0
η (25)

where ξ, β and µ are the direction cosines.

The spatial and the angular discretizations of the RTE follow standard practices of the DOM.

Hence, the spatial discretization was carried out using the finite volume method, yielding the fol-

lowing discretized equation for a direction m in the first quadrant (similar equations may be written

for the other quadrants) and for a band of width ∆ηl:

ξm

[

Im
i+1/2,j,k,lAi+1/2,j − Im

i−1/2,j,k,lAi−1/2,j

]

+ βm

[

Im
i,j+1/2,k,lAi,j+1/2 − Im

i,j−1/2,k,lAi,j−1/2

]

−
[

Ai,j+1/2 − Ai,j−1/2

][

αm+1/2I
m+1/2
i,j,k,l − αm−1/2I

m−1/2
i,j,k,l

wm

]

=
(

− κi,j,k,lI
m
i,j,k,l + κi,j,k,lI

0

η,i,j,k,l

)

V (26)

In this equation, the cell volume and the area of the cell faces were denoted by V and A, respec-

tively, I
0

η is the mean blackbody radiation intensity over the band, wm is the DOM quadrature

weight and the coefficients α arise from the discretization of the third term on the left of Eq. 25,

as explained, e.g., in [28]. The directions m ± 1/2 define the edges of angle ∆Ψ associated with
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direction m. Subscripts i and j identify the control volume, and i + 1/2, i − 1/2, j + 1/2 and

j − 1/2 refer to the east, west, north and south cell faces of that control volume, respectively.

Subscripts k and l denote the CK quadrature point and the band under consideration. In this work,

the cell face radiation intensities were calculated using the CLAM scheme [29], which is formally

second-order accurate and bounded, and a level symmetric SN quadrature.

The total radiation intensity at a control volume is obtained by adding the contributions of all

the CK quadrature points in a band, all directions and all bands:

Ii,j =

Nb
∑

l=1

∆ηl

M
∑

m=1

wj

NQ
∑

k=1

ωkI
m
i,j,k,l (27)

where ωk is the CK quadrature weight, Nb the number of bands, M the number of directions, and

NQ the number of quadrature points in the CK method. There are 7 quadrature points per band

and per participating gas; the weighting factors ωk are taken from the database of Ecole Centrale

de Paris [30, 25].

The heat flux incident on the west boundary is calculated as:

qw,j =

Nb
∑

l=1

∆ηl

[

NQ
∑

k=1

ωk

(

M
∑

m=1
(ξm<0)

wm|ξm|Im
i,j,k,l

)]

(28)

Similar equations may be written for the other boundaries. The divergence of the radiative heat

flux is obtained from:

∇.qi,j =

Nb
∑

l=1

∆ηl

[

NQ
∑

k=1

ωkki,j,k,l

(

4πI
0

η,i,j,k,l −
M
∑

m=1

wmIm
i,j,k,l

)]

(29)

3 Results and Discussion

3.1 Description of the test cases

Three radiative heat transfer problems in two-dimensional axisymmetric enclosures involving

gas-soot mixtures at atmospheric pressure and gray diffuse reflective walls have been solved. Spec-

ular walls have also been introduced and comparisons with diffuse walls calculations have been
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performed. In the first test case, a homogeneous, isothermal configuration is considered and both

the radiative heat source along the centerline of the cylinder and the incident radiative heat flux on

the lateral wall are computed. Test case 2 presents a homogeneous, non-isothermal configuration.

The radiative heat source is calculated along the centerline of the cylinder and the net wall heat

flux is calculated on the lateral wall. Spectral data for soot and gas are the same as those used in

[3]. As soot particle diameters are nanometric, the scattering effect is neglected. A third test case

is considered to highlight the effect of considering either diffuse or specular walls.

The level of accuracy of the CK compared to the SNB model has been discussed in detail in

our previous publication [3]; errors due to the use of these two different models do not exceed 1%.

Comparisons between the SNB-CK and the SNB models have already been studied in previous

papers [31, 32, 33, 34]. In the configurations that we present here (test case 1 and 2), the SNB-CK

and the SNB give solutions in very close agreement; the error between computed solutions by both

methods (DOM and MCM) is mainly due to the angular and spatial discretizations of the RTE case

is therefore ideally suited to highlight the difference between specular and diffuse walls.

3.1.1 Test case 1

The enclosure is a cylinder of length L = 3m and radius R = 0.5m. The walls are gray with

an emissivity εw = 0.5, and a temperature of 800K. The temperature of the gas is 1800K. The

composition of the medium is 20 % H20, 10 % CO2 and 70 % N2 at atmospheric pressure and

the soot volumetric fraction is fv = 10−7. The radiative heat source along the centerline of the

cylinder is shown in Figures 3(a) and 3(b). The incident heat flux on the circular wall is shown

in Figures 3(c) and 3(d). Both the MCM and the DOM results are shown. The DOM calculations

have been carried out for two different grids, respectively with 41 × 30 (coarse grid) and 81 × 60

control volumes. Two different quadratures were also employed: S8 and S16.

The radiative heat source presents a strong variation for calculation points that are very close

to the cold side walls (x = 0 and x = L). Between x ' 0.5m and x / 2.5m, the profile is

roughly flat with a heat source of ≈ 500kW.m−3 at the center of the cylinder. The incident heat

flux presents also a quite flat profile far from the side walls and decreases with the distance to these
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walls. Figure 3 shows a minor influence of the spatial discretization on the DOM results in this test

case because the medium is homogeneous and isothermal. The accuracy of the DOM is improved

with the refinement of the angular discretization. As an indication, the difference between DOM

and MCM results was compared at the center point (x = 1.5m) of the cylinder. For DOM-S16

calculations, the heat source was found to be 1.38% less than the MCM results for the coarse grid

(2.40% for DOM-S8), and 1.34% less for the finer one (2.19% for DOM-S8). Considering the

wall heat flux, a difference of 0.32% was found for DOM-S16 results with the coarse grid (1.31%

for DOM-S8) compared to MCM ones, and a difference of 0.31% for the finer one (1.31% for

DOM-S8).

The numerical results associated to the MCM calculations can be found in appendix B (Table

1) in order to enable readers to use them for benchmark purposes. Results of DOM calculations

for specular walls are not available on this configuration, but a comparison between specular and

diffuse walls is presented, using MCM calculations on figure 4.

3.1.2 Test case 2

An axisymmetric enclosure is considered again where the length of the cylinder is L = 1.2m

and the radius is R = 0.3m. The medium is homogeneous, composed of 15% water vapor and

85% nitrogen. The soot volumetric fraction is fv = 10−6. The lateral wall is diffuse with an

emissivity of εw = 0.8; the side walls (x = 0m and x = L = 1.2m) are black. The following

two-dimensional gas temperature profile is considered:

T (x, r) = 800 + 1200
(

1 − r

R

)(x

L

)

(30)

This means that all the walls have a temperature of 800K except the right wall (x = L), which is

maintained at 300K.

The divergence of the radiative heat flux at the centerline of the cylinder is continuously in-

creasing with x, because of the temperature profile of the medium and the surrounding walls,

which are maintained at the same temperature. Both the source term and the gas temperature reach

the maximum at the immediate vicinity of the cold wall (x = L) (Figures 5(a) and 5(b)). Figures
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5(c) and 5(d) show that the net heat flux is also increasing continuously from x = 0m to x ≈ 1m,

and then decreases because of the presence of the cold wall.

As for the test case 1 the calculations are carried out using the DOM for two grids and two

angular discretizations and are compared to the MCM results (Figure 5). The DOM results are in

excellent agreement with the MCM results for the calculation of the radiative heat source on the

centerline of the cylinder; the refinement of the grid seems to have no influence on the results, and

the angular discretization has a minor influence. In Figure 5(c), a discrepancy is observed between

the DOM-S8 and the MCM results for the calculation of the net heat flux on the lateral wall. The

discrepancy is not observed any more with a finer angular discretization, which suggests that the

difference was only due to the ray effect. The MCM numerical results for test case 2 can be found

in appendix B (Table 2).The DOM (coarse grid) numerical results are available too in the appendix

B (Table 3) at some calculation points. The radiative heat source term and the net heat fluxes are

computed by the MCM for diffuse and specular walls and are compared in figure 6; the difference

between both solution remains marginal.

3.1.3 Test case 3

The geometry (see figure 7) is axisymmetric with a length L = 0.24m and a radius 0.03m. The

whole configuration is at a temperature of T = 1500K, except the top of the cylinder at x = 0.24m,

which is at 400K. The medium is a mixture of 20% H2O, 10% of CO2 and a volumetric fraction

of soot fv = 10−7. The walls are black, except the bottom third of the cylindrical wall (from

x = 0m to x = 0.08m), which is taken either as black, diffuse or specular (ε = 0.5). The average

value of the heat source is computed within a cylinder of same height (between x = 0m and

x = 0.08m) and variable radius (between r = 0m and r = 0.03m) to show the influence of the

specular reflexion (Figure 8). For black and diffuse walls, the average radiative source term is

quasi independent of the radius (within the error bars).When the radius is equal to 0.03 (radius of

the cylindrical enclosure), the difference between the diffuse and specular reflexion is about 5%,

an order of magnitude that is comparable to the differences observed in the preceeding test cases.

When the radius decreases, this difference increases and reaches 20%. This is due to the fact that
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the reflective surfaces are restricted to the bottom third of the cylindrical surface : with specular

properties, no optical path can be found to reach the top cold surface with at least one reflexion.

The average heat source is therefore due to the direct optical paths (without reflexion) only and

indeed for small radius, this average radiative source term tends to the value observed for black

surfaces. This test case is therefore ideally suited to highlight the difference between specular and

diffuse walls.

4 Conclusion

A Monte Carlo Net Exchange Formulation including multiple reflexions has been detailed and

used to solve two radiative heat transfer problems. For all test cases, diffuse and specular reflexions

were considered with a medium that is a mixture of H2O, CO2, N2 and soot, at atmospheric

pressure. A Discrete Ordinates Method has also been used on the two first test cases in order to

compare with the Monte Carlo results in the case of diffuse reflexion. Altogether :

• The MCM-NEF has been extended to multidimensional enclosures with reflective, diffuse

or specular boundaries.

• Highly accurate solutions are available for the three considered configurations that can be

used for benchmarking.

• The DOM-CK method was shown to perform satisfactorily using the S8 quadrature (max-

imum error of 2.4% for radiative source term and 1.31% for radiative wall heat flux) and

to yield very good predictions using S16 quadrature (maximum error of 1.38% for radiative

source term and 0.32% for radiative wall heat flux).
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A Weights for volume-surface, surface-volume, and surface-

surface exchanges

ϕ(Vi,Sj) =

Nb
∑

n=1

pn∆νn

∫ 1

0

pdf(g)dg

∫

Vi

pdf(Vi)dVi

∫

4π

pdf(ω0)dω0 . . .

∫

4π

pdf(ωm)dωm . . .

[

W0,V S + W1,V S + W2,V S + . . . + Wm,V S + . . .

]

(31)

W0,V S =
1

pn pdf(g)pdf(Vi)pdf(ω0)
× Γjκiτijε1∆Iij

1
(32)

W1,V S =
1

pn pdf(g)pdf(Vi)pdf(ω0)
× Γjκiτijε2∆Iij(1 − ε1)F1(u1|u0)

pdf(ω1)
(33)

W2,V S =
1

pn pdf(g)pdf(Vi)pdf(ω0)

× Γjκiτijε3∆Iij(1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1)

pdf(ω1)pdf(ω2)
(34)

Wm,V S =
1

pn pdf(g)pdf(Vi)pdf(ω0)

× (1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1) . . . (1 − εm)Fm(um|um−1)

pdf(ω1)pdf(ω2) . . . pdf(ωm)

× Γjκiτijεm+1∆Iij (35)
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ϕ(Si,Vj) =

Nb
∑

n=1

pn∆νn

∫ 1

0

pdf(g)dκ

∫

Si

pdf(Si)dSi

∫

4π

pdf(ω0)dω0

∫

pdf(σ0)dσ0 . . .
∫

4π

pdf(ωm)dωm

∫

pdf(σm)dσm . . .

[

W0,SV + W1,SV + W2,SV + . . . + Wm,SV + . . .

]

(36)

W0,SV =
1

pn pdf(g)pdf(Si)pdf(ω0)
× Γjεi cos θiτijκj∆Iij

pdf(σ0)
(37)

W1,SV =
1

pn pdf(g)pdf(Si)pdf(ω0)
× Γjεi cos θiτijκj∆Iij(1 − ε1)F1(u1|u0)

pdf(σ1)pdf(ω1)
(38)

W2,SV =
1

pn pdf(g)pdf(Si)pdf(ω0)

× Γjεi cos θiτijκj∆Iij(1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1)

pdf(σ2)pdf(ω1)pdf(ω2)
(39)

Wm,SV =
1

pn pdf(g)pdf(Si)pdf(ω0)

× (1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1) . . . (1 − εm)Fm(um|um−1)

pdf(σm)pdf(ω1)pdf(ω2) . . . pdf(ωm)

× Γjεi cos θiτijκj∆Iij (40)
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ϕ(Si,Sj) =

Nb
∑

n=1

pn∆νn

∫ 1

0

pdf(g)dκ

∫

Si

pdf(Si)dSi

∫

4π

pdf(ω0)dω0 . . .

∫

4π

pdf(ωm)dωm . . .

[

W0,SS + W1,SS + W2,SS + . . . + Wm,SS + . . .

]

(41)

W0,SS =
1

pn pdf(g)pdf(Si)pdf(ω0)
× Γjεi cos θiτijε1∆Iij

1
(42)

W1,SS =
1

pn pdf(g)pdf(Si)pdf(ω0)
× Γjεi cos θiτijε2∆Iij(1 − ε1)F1(u1|u0)

pdf(ω1)
(43)

W2,SS =
1

pn pdf(g)pdf(Si)pdf(ω0)

× Γjεi cos θiτijε3∆Iij(1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1)

pdf(ω1)pdf(ω2)
(44)

Wm,SS =
f(κ)

pn pdf(κ)pdf(Si)pdf(ω0)

× (1 − ε1)F1(u1|u0)(1 − ε2)F2(u2|u1) . . . (1 − εm)Fm(um|um−1)

pdf(ω1)pdf(ω2) . . . pdf(ωm)

× Γjεi cos θiτijεm+1∆Iij (45)
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B Numerical results for test case 1 and test case 2

Test case 1

x (m) ∇.q(kW/m3) qw(kW/m2) x (m) ∇.q(kW/m3) qw(kW/m2)

0.0205 770.83±1.58 232.07±0.39 0.6505 513.84±1.54 300.06±0.48

0.0405 697.80±1.47 242.02±0.41 0.7005 511.13±1.53 300.84±0.51

0.0605 657.24±1.45 249.33±0.41 0.7505 509.64±1.55 302.39±0.52

0.0805 632.61±1.45 254.26±0.40 0.8005 509.40±1.51 302.18±0.51

0.1005 614.27±1.41 259.22±0.42 0.8505 506.26±1.48 303.88±0.51

0.1205 601.34±1.38 262.94±0.37 0.9005 505.15±1.45 304.63±0.53

0.1405 589.66±1.52 266.72±0.44 0.9505 503.50±1.45 305.38±0.49

0.1605 582.51±1.53 269.55±0.47 1.0005 502.54±1.49 305.67±0.52

0.1805 575.40±1.59 272.38±0.46 1.0505 501.63±1.49 306.21±0.55

0.2005 568.26±1.53 274.10±0.48 1.1005 501.46±1.48 306.69±0.53

0.2505 555.22±1.47 279.82±0.45 1.1505 501.01±1.56 307.34±0.52

0.3005 547.66±1.47 283.67±0.42 1.2005 499.73±1.45 307.88±0.51

0.3505 537.50±1.57 287.61±0.47 1.2505 499.61±1.64 307.85±0.49

0.4005 531.34±1.55 290.29±0.49 1.3005 499.44±1.64 307.10±0.51

0.4505 528.04±1.57 292.47±0.51 1.3505 499.51±1.63 308.10±0.54

0.5005 523.93±1.56 295.15±0.51 1.4005 499.56±1.77 308.39±0.53

0.5505 519.16±1.51 296.60±0.51 1.4505 496.62±1.64 308.12±0.52

0.6005 516.65±1.56 298.08±0.47 1.4905 498.89±1.59 307.91±0.49

Table 1: Numerical results for the first test case; qw is the flux on the lateral wall of the cylinder,

and ∇.q is the radiative source term on the axis of the cylinder. Data from the MCM and associated

statistical errors.
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Test case 2

x (m) ∇.q(kW/m3) qw(kW/m2) x (m) ∇.q(kW/m3) qw(kW/m2)

0.025 -5.25±1.05 2.20±0.03 0.625 1281.18±11.63 20.15±0.15

0.075 29.63±1.34 2.98±0.03 0.675 1539.15±13.54 22.36±0.17

0.125 69.98±1.92 3.92±0.04 0.725 1827.86±14.24 24.54±0.18

0.175 119.22±2.45 4.97±0.05 0.775 2162.77±15.56 26.81±0.20

0.225 177.76±3.40 6.17±0.06 0.825 2554.37±17.50 28.94±0.22

0.275 250.26±3.75 7.50±0.07 0.875 2990.06±18.55 30.85±0.23

0.325 335.50±4.64 8.98±0.08 0.925 3489.83±20.37 32.47±0.25

0.375 435.91±5.95 10.54±0.09 0.975 4065.79±22.18 33.20±0.26

0.425 558.42±6.72 12.24±0.10 1.025 4741.95±24.85 33.07±0.26

0.475 699.10±7.44 14.06±0.11 1.075 5549.90±28.30 31.56±0.27

0.525 864.32±8.50 16.05±0.12 1.125 6530.07±31.34 27.80±0.95

0.575 1062.02±10.19 18.02±0.14 1.175 7992.95±3.18 20.70±1.16

Table 2: Numerical results for the first test case; qw is the net flux on the lateral wall of the cylinder,

and ∇.q is the radiative source term on the axis of the cylinder. Data from the MCM and associated

statistical errors.
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Test case 2: DOM-S16 Test case 2: DOM-S8

x (m) ∇.q(kW/m3) qw(kW/m2) ∇.q(kW/m3) qw(kW/m2)

0.075 28.28 3.03 19.19 2.67

0.225 185.67 6.20 171.26 5.73

0.375 438.25 10.48 435.96 9.9

0.525 901.89 15.83 868.35 15.24

0.675 1587.00 22.03 1540.04 21.61

0.825 2604.75 28.46 2544.99 28.02

0.975 4090.58 32.62 4017.71 30.93

1.125 6404.20 27.88 6328.39 28.17

Table 3: Numerical results for the second test case; qw is the net flux on the lateral wall of the

cylinder, and ∇.q is the radiative source term on the axis of the cylinder. Results from the DOM

calculations.
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C Monte Carlo integration principle and statistical errors

The statistical errors appearing in tables B.1 and B.2 are computed together with the solution

according to the standard Monte Carlo integration method which principle is reminded hereafter.

Let us consider the integral I =
∫

D
f(x)dx. One can always introduce an arbitrary probability

density function p defined and strictly positive on the integration domain D and define g(x) = f(x)
p(x)

so that:

I =

∫

D

f(x)

p(x)
p(x)dx =

∫

D

g(x)p(x)dx

Let us now define a random variable X distributed according to p, then g(X) is also a random

variable and I is the expectation of g(X), and I will be estimated with N samples of g(X):

I = E[g(X)] ≈ 1

N

N
∑

i=1

g(xi) =< g(X) >N

(

I = lim
N→∞

< g(X) >N

)

The standard deviation of the estimate is σ(< g(X) >N) = 1√
N

σ(g(X)), where σ(g(X)) is

the standard deviation of g(X), and will be approximated as:

σ(< g(X) >N) ≈ 1√
N

√

[< g(X)2 >N − < g(X) >2
N ]

The relative errors reported in tables B.1 and B.2 correspond to this standard deviation estimate

divided by the integral estimate.
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Figure captions

Figure 1:

Exchange between two volumes in case of black enclosures.

Figure 2:

Exchange between two volumes in case of reflective walls.

Figure 3:

Heat source on the axis of a cylinder and radiative flux on the lateral side for test case 1.

Figure 4:

Comparison between a specular and a diffuse wall for test case 1.

Figure 5:

Heat source on the axis of a cylinder and radiative net flux on the lateral side for test case 2.

Figure 6:

Comparison between a specular and a diffuse wall for test case 2.

Figure 7:

Average heat source term
R

C
−∇.qr

πr2 L
3

computed for a cylinder with variable radius within a cylindrical

enclosure

Figure 8:

Schematic of test case 3.
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