Contents

User’s guide for CECILE

Martin Choma, A. de Lataillade
November 4, 2002

1 Introduction

2 Compiling and linking
2.1 Decompressing package oL
2.2 Compiling and linking

3 The input files.
3.1 Structure of input files

4 OQutput files

5 Flowcharts

5.1 Symbols description
5.2 Main file : mcecile.f L L
5.3 Subroutine genere kg.f
5.3.1 Subroutinerass.f oL
5.3.2 subroutine gira.f L
5.3.3 Subroutinechra.f o L0
5.3.4 Subroutineunra.f.o
5.3.5 Subroutineurand.f
5.3.6 Subroutinecdss.f Lo
5.3.7 Subroutine gicd.f
5.3.8 Subroutinested.f oo
5.3.9 Subroutine trss.f
5.3.10 Subroutinerags.f
5.4 Subroutine trajet.f oL o Lo
6 Subroutines description
6.1 Main program mcecile.fo 0oL oL
6.2 Subroutine descriptiono oo
6.2.1 Name: BLACK.F.
6.2.2 Name:BLACK DT
6.2.3 Name: CDSS.F

6.2.4 Name: CHRAF, 25
6.2.5 Name: FICH.F 25
6.2.6 Name: GENERE BF 25
6.2.7 Name: GENERE KG.F. 26
6.2.8 Name: GICD.F 26
6.2.9 Name: GIRAF 26
6.2.10 Name:MODBGAZ.F 26
6.2.11 Name: MODBGAZINTERP.F 27
6.2.12 Name: MODBSUIE.F 27
6.2.13 Name: PARAMBGAZ.F 27
6.2.14 Name:PARAMIND.F 27
6.2.15 Name: RAGS.F. 28
6.2.16 Name: RAND UNIFORME.F 28
6.2.17 Name: RASS.F 28
6.2.18 Name: STCD.F 28
6.2.19 Name: TIRB.F 29
6.2.20 Name: TRAJET.F, 29
6.2.21 Name: TRAJET FONC.F 29
6.2.22 Name: TRAJET SENS.F. 29
6.2.23 Name: TRSS.F 30
6.2.24 Name: UNRA.F 30
6.2.25 Name: URAND.F, 30
6.3 Include files description oL oo 31
6.3.1 NAME: cecilednc 31
6.3.2 NAME: propradia.inc 31
6.3.3 NAME: propradiabis.inc 32
6.3.4 NAME: radiatifinc oL 32
6.3.5 NAME:entredinc 33
About bugs 33
Monte Carlo method and random number generator 34
8.1 Overview 34
8.2 About random numbers oL oL 34
8.3 Generation of Random Numbers 35
8.3.1 Congruential Generators 35
8.3.2 Shift-Register Generators 35
8.3.3 Fibonacci generators 36
8.3.4 Practical generators-Super Duper 36
8.3.5 Unra generatorin CECILE 36
8.4 Testing random Number Sequences 37
8.4.1 Testing of uniformity. 38

8.4.2 Correlations in random numbers generators: Good’s serial
test ..o 40

8.4.3 Correlations in random number generators: Correlation
coeficientso 44

8.4.4 A composite test for correlations L. 46

8.4.5 A block test for correlations 48
84.6 Conclusions 50
9 References 50

1 Introduction

Cecile is a software written in fortran for computing net exchange radiation
between surfaces and volumes in one dimensional cylindric or plan system. Pro-
gram uses Monte Carlo method with several thousands iterations for each vol-
ume. Concerning transfer of radiation, we define basic variable named intensity
L.

There is an emission point, origin of radiation with elementary solid angle df?,
and absorption surface. Observer has a viewing angle © throughout an
elementary surface dS and there is an elementary spectrum dv through which
we assume the radiation emission.

€o

Observer receive a radiation quantity calculated as follows:

dd = (I) x dS = d) x cos * dv

There is another, more interesting value named net exchange radiation, first
time described in Hottel [*]. The net exchange radiation between two volumes
is

Uy = [, pdfudv [, pdfe,dVi [y, pdfe, dV; (i (Is: — In;)
which equals to

Uiy = [2o pdfudo [pdfe.dVi [)7 pdfadS [, pdf.,dS; {FT (Te: — Tn;)

10000
(v, P, Pj,Q)pn=0 V1. (v,P,F;.)

10000

The discrete form of computing is ¥; ; =
with 10000 iterations

For each iteration, we have to random the multiplet (v,Pi,Pj,)
e ¥; ;- net exchange radiation between points I and J
e k;- emission coefficient
e k;- absorption coefficient
e Ip- black intensity
e T;;- transmitivity

In order to random all values, the probability density functions for the variables
are used.

P(x)
PDF

P(x=x1) | _______

Because we can’t determine the value of x from the probability of observing
x, cumulative density functions are used instead. cdf: P(z < z1) = R(z1) =

foxl P(z)dx

P(x)

CDF

Rxl) |-——--"~—="——---— -~

x1

From the value of cumulative density function we can determine the value
of x.

With computing e.g. monochromatic absorption coefficient, first the narrow
band index in the pdf is determined, and each narrow band has its own pdf that
is used for computing .

2 Compiling and linking

For compiling an executable file you’ll need an FORTRAN 77 compiler. Cecile
has been created and tested under Solaris 2.x environment. If you want to run
Cecile under different platform, you will probably need to edit Makefile to set
proper environment settings.

2.1 Decompressing package
1. Put the Cecile.tar.gz file into the directory you want to be installed

2. decompress file with the command :

if you have GNU tar: tar zzf cecile.tar.gz

if you don’t have GNU tar : gunzip cecile.tar.gz ; tar zuf cecile.tar

2.2 Compiling and linking
Change to the cecile directory and for the default installation type

make cecile

This will create an executable file cecile. Note that all input, include and exe-
cutable files should be in the same directory for proper execution of CECILE

make clean will erase files not neccesary for running (such a *.o etc)

3 The input files.

In the CECILE directory you will find file cecile.in which is general input file
and specifies other inputs/name of the input files.

3.1 Structure of input files

file cecile.in:

o first three lines : ignored - space for user comments - all lines not men-
tioned bellow are ignored

e 4th line: value of n - total number of volumes

e 7th line : file name where numbers of iterations -ntir(0..n+1) are stored
(default - n_ tirage.in)

e 10th line: file name where values of volumes - r(0..n+1) radiuses are stored
(rayons.in) (the last two values are the same)

e 13th line : variable rsup _zero for cylindrical configuration - an important
value to simulate parallel plan geometry

e 16th line :file name where value of pressure total- ptot is stored (ptot.in)

e 19th line: file name where values of temperature (in Kelvins)- temp (0..n+1)
are stored (temperat.in)

e 22th line:file name where values of moll fractions of CO-fm(1,1..n) are
stored (fmco.in)

e 25nd line:file name where values of moll fractions of CO2 -fm(2,1..n) are
stored (fmco2.in)

e 28th line: file name where values of mollfractions of H20 - fm(3,1..n) are
stored (fmh20.in)

e 31th line:file name where values of fv (1..n) are stored (fv.in)

e 34th line: logical value : true if spectral integration is used

e 37th and 40th line : needed if the variable in 34th line set to false

e 43th line:false if there are no interpolation profiles

e 46th line:true is value of psi are stored
file SNBWN

e spectral values : eta(ibande), delta_ eta(ibande)
file SNBCO (access by subroutine parambgaz.f)

e coefficient of absorption for CO : kgb_piv(1,1..14,1..48), dinv(1,1..14,1..48)
file SNBCO2 (access by subroutine parambgaz.f)

e coefficient of absorption for CO2: kgb_piv(2,1..14,1..96), dinv(2,1..14,1..96)
file SNBH20 (access by subroutine parambgaz.f)

¢ coefficient of absorption for H20: kgb_piv(3,1..14,1..867), dinv(3,1..14,1..367)

4 Output files

file cecile.out:

e describes names of the input files ind.out, psi.out, dpsi.out
file ind.out:

e imax=n jmax=n kmax=n
file psi.out:

e net exchange radiation: structure : in, in, r(in), r(in), psi(in,iin),
var_ psi(in,iin)

file dpsi.out:

e relative net exchange radiation : structure : in, #in,itmp1, dpsi6dfv(in,iin,itmp1),
var_ dpsi6fu(in,iin,itmp1)

file dpsidt.out

e relative net exchange radiation/temperature in, iin, itmp1, dpsi6dt(in,in,itmp1)

5 Flowcharts

5.1 Symbols description

Terminator
Start/end of
program/subroutine

Input/Output
Process
- . n
decision
if/then
y
Connector
Loop

5.2 Main file : mcecile.f

fmco.in, fmco2.in, fv.in

START
includefiles -
gfggz;i‘;im R DECLARATIONS
entre.inc
propradiabis.inc ¢ cecilein, ptot.in rayons.in
rediatif.inc READ INPUT [n_tirage.intemperat.in

cal parambgaz.in
cal paramind.in

~ ™7 element |
whereis point P

iteration loop

Lambert angle computations
(theta,sigma)->(delta,fi)
call unra r—-

value of ii_min
- _!

@ n
interior wall y @

cal genere b

call modbgaz
Y

sigma_1=0

kg(nu)

- - -

‘ element J

call trajet ~~ ™™ whereispoint Q

cecile.out-ind.out
psi.out, dpsi.out

write output
call fich -

END

cdl genere b
! cdl genere b
call modogaz
cal modhsuie ‘
| call modhgaz
cal modosuie
cdl genere kg i
‘ call genere kg
sgma 1=0 |
$ cal unra
sigma 1=0
call trajet
!
¢ cal trget

&

|

©

10

Flat trajectorie

- Oneintersection
connected volume

Non flat trgjectorie

@ _ _ _ _» | Severd intersections"starry volume'

‘ random the

intersections

(tmp2)

firdt intersection

cdl genere b M

!

call modhgaz
cal modbsuie

f

call genere kg

cdl unra
sgma 11=0

cal trget

. second intersection

y not near Q
call genere b
cal modbgaz
cal modbsuie
!
cal genere kg
sgma 1is
cdl unra .
sigma 1!=0 - > abscissaof
point P
cal trajet

|

0

11

5.3 Subroutine genere kg.f

START subroutine genere_kg.f

declarations

n

cas_genere kg=1 —+

koc_genere_kg=(1.D+0/ep_genere kg)-
call rass (phig(3,in) kgbar(3,in), - 1.D+0* kshar(in)

0kg)

y

kgc_genere_kg<0

CALL cdss(phig(3,in) kgbar(3,in),0.D+0,
CALL rass(phig(3,in) kgbar(3,n) 0.D+0kg) kge_genere kg,tmp3)

i

CALL cdss(phig(3,in).kgbar(3,in),
.ep_genere_kg,kgc_genere_kg,tmp4)

i

CALL trss(phig(3,in) kgbar(3,in)
€p_genere_kg,tmps)

1

tmp6=(tmp3 - tmp5* tmp4)/(1.D+0 - tmp5)

'

CALL unra (tmp7)

CALL rass(phig(3,in), CALL rags(phig(3,in),

kgbar(3n).0.D+0kg) kgbar(3),0D+0kg)

—

poids=poids/(tmp6*kg/kgbar(3,in)+(1.D+0-tmp6))

kgskgbar=kg/kgbar(3,in)

12

5.3.1 Subroutine rass.f

subroutine rass.f

START :
k-sampling for surface-surface exchanges

input phrass,cbrass,
alrass

Y

rassl=dsqrt(1.d0+2.d0/phrass* chrass* alrass)

Y

rass2=phrass* rassl

rass3=cbrass/rassl

call gira(rass2,rass3,rarass)

END

13

5.3.2 subroutine gira.f

START subroutine giraf

random generator from an inverse

gaussian distribution
call chra(giral)

gira2=giral/phgira

|

gira3=gira2/2.do

|

T

girad=umgira* (1.dO+gira3-dsqrt(gira2+gira3**2))

girab=umgira/(umgira+girad)

call unra(girab)

‘ n

y

y

T

Xgira=gira4 Xgira=umgira**2/girad

END

14

5.3.3 Subroutine chra.f

subroutine chra.f

START random generator from a chi-square

+ distribution

pichra=3.141592654d0

call unra(chral)

call unra(chra2)

Y

xchra=-2.d0* dlog(chral)* dsin(pichra/2.d0* chra2)** 2

|

END

15

5.3.4 Subroutine unra.f

START

'

common/comsee/iseed

iseed<0

iseed=14936

A A

Y

xunra= urand(iseed)

xunra=1
or xunra=1

END

16

subroutine unra.f

5.3.5 Subroutine urand.f

subroutine urand.f

for pseudo-random uniform generations
in the unit interval

START

ia=8*idint(halfm* datan(1.d0)/8.d0)+5
ic=2*idint(hal fm* (0.5d0-dsqrt(3.d0)/6.d0))+1
mic=(m2-ic)+m2 ; s=0.5/halfm

(e
Y

iy=iy*ia

4

iy>mic ‘
‘ iy=(iy-m2)-m2
iy=iy+ic
|
y
iy/2>m2 Y
n ‘ iy=(iy-m2)-m2 ‘
v I
@\ Y
‘ iy=(iy+m2)+m2 ‘
]
y

urand=float(iy)*s

'

END

17

5.3.6 Subroutine cdss.f

subroutine cdss.f
START

'

cdss1=dsgrt(1.d0+2.d0/phcdss* chedss* al cdss)

k-cumulative for surface-surface exchanges

cdss2=phcdss* cdssl

Y

cdss3=cbcdss/cdssl

call gicd(cdss2,cdss3,ccdss,cdcdss)

END

18

5.3.7 Subroutine gicd.f

subroutine gicd.f
START

i

gicdl1l=xgicd/umgicd

!

T

inverse gaussian cumulative

gicd2=dsqgrt(phgicd/gicdl)

Y

gicd3=-gicd2* (1.dO-gicdl)

Y

gicd4=-gicd2* (1.dO+gicdl)

call stcd(gicd3,gicd5)

'

call stcd(gicd4,gicd6)

'

cdgi cd=gicd5+dexp(2.d0* phgicd)* gicdg

END

19

5.3.8 Subroutine sted.f

subroutine sted.f
START

'

stcd1=-xstcd/dsqrt(2)

cumulative of the standard normal

stcd2=real (stcdl)

Y

stcd2=erfc(stcd2)

Y

cdsted=dble(stcd2)/2.d0

END

20

5.3.9 Subroutine trss.f

subroutine trss.f

START transmission function for

'

trssl=phtrss* dsgrt(1.d0+2.d0* cbtrss* atrss/phtrss)

surface-surface exchanges

trtrss=dexp(phtrss-trssl)

END

21

5.3.10 Subroutine rags.f

subroutine rags.f
START

'

ragsl=dsgrt(1.d0+2.d0/phrags* cbrags* alrags)

k-sampling for gas-surface exchanges

rags2=phrags* ragsl

rags3=ragsl/cbrags

Y

call gira(rags2,rags3,rags4)

Y

rarags=1/rags4

END

22

5.4 Subroutine trajet.f

START

Subroutine Trajet.f

Ray tracing for the Net Exchange Formulation

call black
call black_dt

minimum
element

- - - =

inemission

y

iin=in-1..iin_min+1

random sigma;j
optical increment
call black
call trajet_fonc

itmpl=1..n

optical increment
call black_dt
call trajet_sens

iin_min=0

nonflat trgjectories
decreasing radius

sigmaj is constant
optical increment
call black

call trgjet_fonc

'

®

L

iin_entree=in+1
(flat trejecorie)

random sigmaj

optical increment
call black

cal trgjet_fonc

5

23

O

optical increment
call trgjet_sens

optical increment
call black_dt
call trajet_sens

()

aternation
iin_entree=ii_min+1

e iin=ii_entree..n

iin=in

increasing
radius

1

random sigma. j , optical increment
call black, call trgjet_fonc

itmpl=1..n

optical jncrement
call black_dt
caII trajet_Sens

dternation

sigmaj is constant,opticaincrement
call black, cal trajet_fonc
|

optical increment
call trajet_sens

END

24

6 Subroutines description

6.1 Main program mcecile.f

Description: main program, all other subroutines are called from mcecile.f

Variables:
Input variables : described in cecile.in
Output variables: described in cecile.out

Include files:cecile.inc, propradia.inc, propradiabis.inc, radiatif.inc, entre.inc

6.2 Subroutine description
6.2.1 Name: BLACK.F

Description: Monochromatic black intensity computed from wave frequency
(blanu) and temperature (blat). Planck formula is used.

Variables:
Input variables : blanu,blat
Output variables: blae
Include files:none

6.2.2 Name:BLACK DT

Description: Monochromatic black intensity sensitivity / temperature.

Variables:
Input variables : blanu,blat
Output variables: dblae
Include files:none

6.2.3 Name: CDSS.F

Description: k-cumulative for surface-surface exchanges

Variables:

25

Input variables : phcdss,alcdss,cbedss, cedss
Output variables: cdcdss
Include files:none

6.2.4 Name: CHRA.F
Description: random generator from chi-square distribution

Variables:
Input variables : none
Output variables: xchra

Include files:none

6.2.5 Name: FICH.F

Description: write results to output files

Variables:
Input variables :
Output variables:
Include files:cecile.inc

6.2.6 Name: GENERE_ B.F
Description: Randomize the narrow band index (ibande)

Variables:
Input variables : in,
Output variables: ibande

Include files:cecile.inc,propradia.inc

26

6.2.7 Name: GENERE KG.F

Description: Randomize the monochromatic absorption coefficient for H20,Co2
and CO

Variables:
Input variables : cas_genere kg,ep genere kg, phig, kgbar
Output variables: kgskgbar, kg
Include files:propradia.inc, cecile.inc, radiatif.inc

6.2.8 Name: GICD.F
Description: inverse Gaussian cumulative

Variables:
Input variables : phgicd,umgicd,xgicd
Output variables: cdgicd
Include files:none

6.2.9 Name: GIRA.F

Description: random generator from inverse Gaussian distribution

Variables:
Input variables : phgira, umgira
Output variables: xgira
Include files:none

6.2.10 Name:MODBGAZ.F

Description: calculation of the transmissivity - narrow band model for gases

Variables:
Input variables : kgb piv, dinv_ piv, eta

Output variables: kgh6p, dinv, gamma, phi

27

Include files:cecile.inc, propradia.inc,propradiabis.inc

6.2.11 Name: MODBGAZINTERP.F
Description: calculates the interpolation coefficients

Variables:
Input variables : TM
Output variables: RT,IT
Include files:none

6.2.12 Name: MODBSUIE.F

Description: Narrow band model for soot

Variables:
Input variables : eta,fv
Output variables: ksbar
Include files:propradia.inc, cecile.inc, radiatif.inc, entre.inc

6.2.13 Name: PARAMBGAZ.F

Description:Subroutine reads the model parameters fo

Variables:
Input variables : none
Output variables: kgb piv, dinv_ piv
Include files:propradia.inc

6.2.14 Name:PARAMIND.F

Description: Subroutine searches the parameter indexes corresponding the wave
number 'wvnb’.

Variables:

Input variables : none

28

Output variables: wvnb, ico2, ih2o,ico.lico.lico2,lih20
Include files:propradia.inc

6.2.15 Name: RAGS.F
Description: k-sampling for gas-surface interface

Variables:
Input variables : phrags, cbrags, alrags
Output variables: rarags
Include files:none

6.2.16 Name: RAND UNIFORME.F
Description: Random double precision numbers generator.

Variables:
Input variables : none
Output variables:xunra
Include files:none

6.2.17 Name: RASS.F
Description: k-sampling for surface-surface conditions

Variables:
Input variables : phrass, cbrass, alrass
Output variables: rarass
Include files:none

6.2.18 Name: STCD.F
Description: cumulative of the standart normal

Variables:

Input variables : xstcd

29

Output variables: cdsted
Include files:none

6.2.19 Name: TIRB.F

Description: Random generator for the narrow band index (ibande)

Variables:
Input variables : p(nbande mx)
Output variables: numbande
Include files:cecile.inc, propradia.inc

6.2.20 Name: TRAJET.F
Description: Ray tracing for the Net Exchange Formulation

Variables:
Input variables : poids,dpdksp,k
Output variables: psi, var-psi
Include files:cecile.inc, radiatf.inc, entre.inc

6.2.21 Name: TRAJET FONC.F

Description: Calculation of psi

Variables:
Input variables : in, iin, w, bi , bj
Output variables: psi, var-psi
Include files:cecile.inc, propradia.inc

6.2.22 Name: TRAJET SENS.F

Description: Calculation of derivation psi/soot volume fraction and temperature

Variables:

30

Input variables : in, iin,itmpl, w, bi , bj, w_dk, bi_dt, bj_dt
Output variables: dpsi6dfv, var dpsi6dfv, dpsi6dt, var _dpsi6dt
Include files:cecile.inc, propradia.inc

6.2.23 Name: TRSS.F

Description: transmission functions, k-distributions, k-cumulatives, random k-
generators

Variables:
Input variables : phtrss, cbtrss,altrss
Output variables: trtrss
Include files:none

6.2.24 Name: UNRA.F
Description: Random double precision numbers generator.

Variables:
Input variables :none
Output variables: xunra
Include files:none

6.2.25 Name: URAND.F
Description: pseudo-random uniform generations in the unit interval

Variables:
Input variables : iy
Output variables: (urand)

Include files:none

31

6.3 Include files description

6.3.1 NAME: cecile.inc

Description: general include file

Variables:

variable dimension
n 1
in 1
iin 1
iin_min 1
test 1
n_mx 1
r 0:n+1
sin_teta 1
delta 1
f 1
long O:n+1
sigma_ 1 1
sigmal _star 1
sigma_ 2 1
ntir 0:n+1
itir 1
probl 1
prob2 1
poids 1
dpdksp 0:n+1
pi 1
bilan 0:n+1
var_bilan 0:n+1
psi 0:n+1,0n+1
psir O:n+1,0n+1
psirm 0:n+1,0n+1
var_psi 0:n+1,0:n+1
dpsi6dfv 0:n+1,0:n+1,1:n
var_dpsi6dfv | 0:n+1,0:n+1,1:n
dpsidkgbar | 0:n+1,0:n+1,1:n
dpsi6dt 0:n+1,0:n+1,1:n
vardpsi6dt 0O:n+1,0:n+1,1:n

6.3.2 NAME: propradia.inc

Description: spectral values include file

32

| variable |dimension|

ngaz_mx 1
ntemp _mx 1
ntemp 1
nbande mx 1
nbande 1
ibande 1
lico ibande
Variables: lico2 ibande
lih2o0 ibande
ico ibande
ico2 ibande
ih20 ibande
eta ibande
delta_eta ibande
| kgb_piv [3LJ |
| dinv_ piv | 3,1,J |

6.3.3 NAME: propradiabis.inc

Description: Radiative properties not needed by EM2C programs

Variables:

| variable | dimension |
kgb6p 3,ibande
dinv 3,ibande
kgb6fv 3,ibande
gamma | 3,ibande
phi 3,ibande

6.3.4 NAME: radiatif.inc

Description: Radiative transfer variables

Variables:

33

| variable | dimension

k iin
ks n
ksbar iin
kg 1
kgbar 3,n
phig 3n
kgskgbar 1
emi 1
emj 1
demi 1
demj 1

6.3.5 NAME:entre.inc

Description: definition of input variables

Variables:

| variable | dimension |

ptot 1

temp n
fm 3n
fv n

7 About bugs

In certain cases program can generate NaN (Not a Number) values as an output.
It is caused by improper inputs in certain calculations, such as input value 0
in the cumulative computations. If you find a bug, please don’t hesitate to
contact us at email address Amaury. Lataillade@enstimac.fr and describe your
experiences with the problem. We don’t feel the program is bug free and any
hints are appreciated.

Here are some examples of non proper behaviour of CECILE:

Surface:

e genere kg.f - when kgbar = 0, division by zero occured, fixed by putting
the condition not to call genere kg when kgbar=0

e rass.f - in certain cases when variable phrass ~ 0 (very small number)
the result of division was infinity, fixed by re-aranging formula by moving
division to the end.

34

e gira.f - using a square of variable umgira produces infinity values in case
of big value of umgira -> fixed by putting division first then multiplication.

Volume:
e rass.f - the same problem as for surface case

e rags.f - if the value of rags4 is equal to 0 the inverted value causes division
by zero, because output value rarags is similar to cbrags (k), in such case
we set rarags equal to cbrags (k)

8 Monte Carlo method and random number gen-
erator

8.1 Overview

Monte Carlo method solves a problem by generating suitable random numbers
and observing that fraction of the numbers obeying some property or properties.
The method is useful for obtaining numerical solutions to problems which are
too complicated to solve analytically.

8.2 About random numbers

All random number generators are based upon specific mathematical algorithms,
which are repeatable and sequential. As such, the numbers are just pseudoran-
dom. Here, for simplicity, we shall term them just “random” numbers, subject
to this realization. Formally,

e Truly random - is defined as exhibiting “true” randomness, such as the time
between “tics” from a Geiger counter exposed to a radioactive element.

e Pseudorandom - is defined as having the appearance of randomness, but
nevertheless exhibiting a specific, repeatable pattern.

¢ Quasi-random - is defined as filling the solution space sequentially (in fact,
these sequences are not at all random - they are just comprehensive at a
preset level of granularity). For example, consider the integer space [0,
100]. One quasi-random sequence which fills that space is 0, 1, 2,...,99,
100. Another is 100, 99, 98,...,2, 1, 0. Yet a third is 23, 24, 25,..., 99, 100,
0, 1,..., 21, 22. Pseudorandom sequences which would fill the space are
pseudorandom permutations of this set (they contain the same numbers,
but in a different, “random” order).

In cecile, we use ‘pseudorandom’ numbers based on linear congruential genera-
tors. Below you will find the test of that generators and some conclusions.

35

8.3 Generation of Random Numbers
8.3.1 Congruential Generators

Congruential generators are based on relation with m,n and v non-negative
integers,
v=n mod m

which defines v as being congruent to n modulo m. It means that v is the
remainder when n is divided by m, or v= n-jm where j is the largest integer
consistent with v being non-negative. In particular we note that m = 2 gives
the bits 0 and 1. The only possible value that v can assume are the integers
in the range 0 to m-1. A sequence of integers {v;} can be generated from this
relation by taking for n some function of the previous number v;_1, i.e.

V;— f(Vi_l) mod m

Provided an initial seed vpis supplied, a string of distinct values can be gener-
ated. The most commonly used generator for pseudorandom numbers is the
Linear Congruential Generator

vi=(av;—1+ c) mod m

By taking & = v;/m we find a sequence of numbers distributed on [0,1].

In the linear congruential generator, only one previous random variable is used
to derive the next one, we can use more of the earlier generated numbers, each
associated with a specified multiplier - a compound generator. If the last &
generated numbers are used, we can write v;=(a.n*"Y + ¢) mod m

where n(i—1) = (Vi—1,Vi—2,...,Vi—i) and the set of multipliers is a= (a,a2,..,ax).
By taking a value of just 2 for k and suitable multipliers a;and ay, a compound
generator with acceptable result structure can be obtained, described next.

8.3.2 Shift-Register Generators

Compound generator of equation of above type, with m = 2, i.e generation of
bits, known as shift-register, or Tauseworth, generator. We can write these bits
as

b; = (albi_1 +asbi—s + ... + a,p_1bi_p+1 + bi_p)mod 2

where p indicates the earliest previous bit included in the sequence (a, = 1),
and the first p bits are provided; the constant ¢ has been set equal to zero.
There is a maximum of 2P — ldistinct possible iterations before sequence
repeats itself.Interesting is the existence of sequences with only two non-zero
coefficients, i.e. b; is of the form b;=(b;_4 + b;—;)mod 2=b;_, ® b;_,

where bs are only single bits, ®denotes the ‘exclusive or’ operation.

36

8.3.3 Fibonacci generators

The prescription described in the last section of constructing a lagged sequence
can be done modulo m > 2 e.g. taking the pth and qth preceding numbers with,
say, p>q, and combining them, mod m, according to some operation

v; = (Vi—qOV;_p)mod m

We can generate a sequence of numbers, given that the first p numbers are
provided e.g. from a multiplicative congruential generator. The operation
denoted by ® is conventionally the ‘exclusive-or’. It may be however just
simple addition or subtraction, and recent studies favour the latter operation,
giving rise to a subtracted Fibonacci generator.And especially interesting
development is the subtract-with-borrow generator of this type. The algorithm
is v;=Wi—q —Vi_p —) mod m

The ‘carry’ coefficient, £, which must be set to 0 or 1, arbitrarily, at initializa-
tion, is reassigned in each call as follows; if the quantity in brackets is negative,
so that m must be added to it to carry out the modulo m operation, J is set
to zero otherwise it assumes the value unity. If m, p, and q satisfy certain
conditions, the period of this generator is mP-m9.

8.3.4 Practical generators-Super Duper

Most modern generators involve the combination of two or more of the ele-
mentary generators described above, an improvement both from the point of
enhancing the statistical quality of the numbers and increasing the period of
the generator. One such is called Super-Duper, originally written at McGill
University, Canada. It combines the numbers produced by a linear congruential
generator with one produced by a shift-register generator and has a period in
excess of 10'8. The former uses equation v;=(av;_;+ ¢) mod m with m=232,
a=69069 and c=0, with the seed vy, an odd integer to produce a 32 bit integer
v;. The shift register employs equation b;=(b;_, + b;_4)mod 2 with p=32 and
q=17 to produce bits, by, sequences of 32 of which are combined to form an
integer u;,
i = 22:1 bk2k_1

These two integers are combined bit-wise ‘exclusive or’ and scaled to give a
variate on [0,1], as, & =273%(v; ® ;)

8.3.5 Unra generator in CECILE

Unra is a uniform random number generator based on theory and suggestions
given in d.e. Knuth (1969), vol 2. The integer iy (seed) should be initialized to
an arbitrary integer prior to the first call to urand. The calling program should
not alter the value of iy between subsequent calls to unra.Values of unra are
returned in the interval (0,1). The recursive algorithm of unra is

37

ia=8*idint(k*datan(1)/8)+5
ic=2*idint(k*(0.5-v/3/6))+1
iy=2*(ia*iy+ic) /k

where k=1.07374182E+09 and idint returns only integer part of number

8.4 Testing random Number Sequences

In this section we will test three random number generators with uniform out-
puts [0,1]. We will compare generator from cecile Unra with standart fortran
Ran function, and the Super Duper described above.

In statistics, a GOODNESS OF FIT test used to compare two distribu-
tions. For nominal or "binned" measurements, a chi-square test is common. For
ordinal or ordered measurements, a Kolmogorov-Smirnov test is appropriate.

We will use these tests for consistency of distribution

Chi-square test: the best known goodness of fit statistic. Chi-square is a way
to numerically compare two sampled distributions:

e Some number of "bins" is selected, each typically covering a different but
similar range of values.

e Some much larger number of independent observations are taken. Each
is measured and classified in some bin, and a count for that bin is incre-
mented.

e Each resulting bin count is compared to an expected value for that bin,
based on the expected distribution. Each expectation is subtracted from
the corresponding bin count, the difference is squared, then divided by the
expectation:

o (Observed; — Expected;)®
X2 72 Expectedlz

The sum of all the squared normalized differences is the chi-square statistic,
and the distribution depends upon the number of bins through the degrees of
freedom or df. The df value is normally one less than the number of bins (though
this will vary with different test structures). Ideally, we choose the number of
bins and the number of samples to get at least ten counts in each bin. For
distributions which trail off, it may be necessary to collect the counts (and the
expectations) for some number of adjacent bins.

The chi-square c.d.f. tells us how often a particular value or lower would
be seen when sampling the expected distribution. Ideally we expect to see chi-
square values on the same order as the df value, but often we see huge values
for which there really is little point in evaluating a precise probability.

38

Kolmogorov-Smirnov test: another goodness of fit test for comparing two
distributions. Here the measurements need not be collected into "bins," but are
instead re-arranged and placed in order of magnitude:

e Nindependent samples are collected and sorted in numerical order in array
X as X1-w XN, X411 Z T

e P(x;) is the cumulative distribution of the sample: the fraction of the n
observations which are less than or equal to x;, P(X< z;)=1/ N

e F(X) is the reference cumulative distribution, the probability that a ran-
dom value will be less than or equal to x. Here we want F(x;), the fraction
of the distribution to the left of x; which is a value from the array.

e we define the statistic q=v/ Nmaz|F(z;) — P(x;)]

o If agreement of the two distributions will be acceptable subject to it being
not less likely than f% (e.g. f=5, corresponding to less than 5% prob-
ability of the theoretical distribution, randomly sampled, giving rise to
the recorded data), for the large value of N (in practice N>30, f can be

approximated by equation f=100e 27" {1 — 2¢/3vN + O(N 1)}

Chi-Square Distribution: distribution tested are often compared to
chi-square distribution, which is defined, with v degrees of freedom as
pXQ,u(Z) — (2"/2F(V/Q))_lz("/2)_16_z/2

8.4.1 Testing of uniformity.

We use a string of N=10000 variates, numbers are histogrammed into k= 151

cells and the statistic T is calculated
T=n"' Y5 (n; — n)?

where m = N/k, it should follow the x?distribution with =150 degrees of free-
dom. This was done for 200 samples, the histogram of these values is compared
with p,2, (T) in following pictures.

39

Uniformity of Unra

]
m

AN

]
=

/LN

—
m

o

Frequency
=)

N
A N

]
0 —/é : : D‘&’:\‘\
5 ull 1ad 120 140 180 180 200 27
T
Testing Ran for uniformity
25
20
- /10 R
; /I
5 /[N\
0 . M .
a0 130 180 230

Uniformity of Super-duper:

40

30‘|
el
() i
5 d
S0
Sp
LY
I
£2i ol
‘1{}:
D-Illrllllllllllllrd
80 1i}0 1éi||l|1||1|||ll'_l
'I? 200

The cumulative frequency from the histogram was compared with P, , (T)
and the Kolmogorov-Smirnov Statistic q, defined earlier, formed.

e Unra q—0.486 -> f— 60.1 %.
e Ran q=0.5144 -> f=56.73 %
e Super Duper q=0.606, f=46 %

where f% means probility of obtaining larger value than q in such a comparision
with the predicted x2distribution. Since this is the test of uniformity, we can
conclude there is no significant evidence of deviation from uniformity in samples
of size 10000 drawn from Super Duper and Ran generator. Unra, however has
larger deviation and it can be considered not as uniform as other two generators.

8.4.2 Correlations in random numbers generators: Good’s serial test

For each of 200 samples, each sample has 10000 variates, we take an overlapping

pairs of numbers. The N-1 points (&;,&+1), i=1,...,N-1 were histogrammed into
k? sub squares with k=16, so for each from 162subsquares we have number
n; ;,i=1..16,j=1..16, which equals number of occurencies of pairs in those square.

the following quantities were formed,

41

e1=(N-1)/k e =el/k,c; =3,
t1:Zk(Cn’:1 —e1)?/er

k k
to =Dy 2o (nij — e2)*/ex

The statistic w is defined by

n;j
and
W:tQ —tl

The distribution of this walues are shown in following pictures with
comparision with p,2 , (w) for v=k(k-2)+1= 225 degrees of freedom.

Good's serial test for Unra

[
m

“&}j

Frequency

DU“IEI'_T“I
]

150 200 250 300

42

Good's serial test for Ran

25

- [

. i\
) A~ N[

: A N

s

I:I T T T T T T T
51 40 170 190 210 230 2680 270 2590
Super duper : normal and cumulative distributions
| 257 1.2 3
1 (9 1.0 (b)
20
oy
O
=1 0.8
g 154
32 -3
s i ZFo6
= =
10
0.4
5
] 0.2
(O S e e e L S B B B 0.0 T+ rrrfrrrryp T T T T T
150 200 250 3040 150 200 250 300

We formed also the corresponding cumulative distributions and apply Kolmogorov-

Smirnov test.

43

Good's serial test for Unra, Kolmogorov-Smirnov
test

1.2
1
. 08 /
2 0p
* 04 i
02 /
0

150 170 150 210 230 250 270 290

Good's serial test for Ran, Kolmogorov-Smirnov

test

1,2

1
0g 5§5ffﬁﬁﬂﬁ.’;=_
05
04 fﬁk
0.2 —

|:| I 1 1 1 1 I 1

150 170 150 210 230 240 270 230 310

Kolmogorov-Smirnov statistics:

44

e unra: q=0.814 -> f=25.16%
e ran: q=1.227 -> f=3.50 %
e super duper: q=0.957 f=15.3 %

The f is probability of getting a value larger than q in a sample of size 200 in
comparison of cumulative distributions.

8.4.3 Correlations in random number generators: Correlation coe-
ficients

In this test we choose the j separation correlations test for samples of 10000
variations. We take the sample of 10000 random numbers and the estimation
of the correlation coeeficients are
v 12(<&ibirs > —1/4) = 12(< (& = 1/2) (€t — 1/2) >)

for j=1,10 and 100

The relevant statistics is u:Nr? which, independent of j, can be shown to
approximately have the chi-square distribution with one degree of freedom. For
each of the three values of j, 200 such coefficients were determined.Their distri-
bution is shown in following figures.

Unra:

100
50
80 4
70 H
B0 1
g0 .k
40
30
20
10
0

45

100
g0
G0
40
20

-20

Correlations coefficients test for Ran

Super-duper:

We can see there is no evident deviance from theoretical distribution in any

Frequency

100

[5)] oo
Qo [L] L)

IS T T T T T N 0 I

o

o

of renadom numbers generators

46

8.4.4 A composite test for correlations

An alternative to a calculation of the correlations of lagged pairs is to combine
such pairs or other multiplets, to form variate whose distribution, based on
independent variates, is theoretically known. For example, we find that the
product of two independent uniform random numbers

o u=¢§;&itj
should be distributed as

e p(u)=-In(u) for 0< u <1.

Taking j=1,10000 non-overlapping pairs from generators were formed, and
histogram of 100 bins was formed. Their distribution is compared with its
theoretical distribution in following figures

A composite test for correlations for Unra

BOO
A00

Z 400
Y

Frequen

300
200 M,
100 v

47

Composite test for correlations for Ran

800

700

RO0

a00

400 8
300 i

200 L

100 i

1.2

Super duper:

600
]

500

Frequency

Z00

48

There is no large deviance observed, however, the chi-square T with 99
degrees of freedom for the

e unra has value T of 103.12 thus the probability that this value or larger
would be seen is 36.63 %

e ran : T=84.53 -> 84.97 % probability

e super-duper:T=72.7 -> 98 % confidence level of agreement between dis-
tributions.

8.4.5 A block test for correlations

An important source of information on the quality of random number generators
is the result obtained when using numbers to simulate a problem, whose solution
is known.These algorithms are sensitive to non-randomness, in particular non-
uniformity, in successive sequences of a given length. A large number,N, of
non-overlapping sequences of the length m, (&, &, ...&), are generated and in
each case the mean is found, The number of cases where the mean is less than
a half N_, and the greater than a half, N, is tested against expectations using

the chi-square statistics, i.e.

- N:—N/2)?2 _ (2N, —N)?
T*Zi:q:(N/2/) - +N

This quantity should follow the chi-square distribution with one degree of
freedom. In following figures see the value obtained for the N=10000samples of
sequences of different length in the range m=20 to 200 (for unra and ran) resp.

m=20 to 400 (super duperand ranecu used in [*|MacKeown). the horizontal
line at 3.841 represents the 5% level for the chi-square test with one degree of
freedom. No systematic divergence from expectations is seen in either case,
and we can be fairly confident of the quality of the variates produced by these
generators.

49

A Block test for correlations for Ran and Unra

5
4
3 - 5% level
=) Cr < Unra
’ * u & W Fan
1 i ® B
&
I:I 'E} T (::} {?} ﬁ} {} T 2 -
a tal 100 150 200 280
m
Super Duper and Ranecu:
10
: O
87
6
B]
Foch o e eiadae sen ek Bt R LR i e g RGN el s o
] o e
2] ® o ¢
3 Q
E L] i ot @ > Q
] O g oae
D;_D_a-——i—ﬂ—m—-ﬁ—.—e}—!——.—‘-—& Q s o :
0 100 200 300 400 500
ITl

50

8.4.6 Conclusions

There are numerous ways how to test random number generators, we performed
only few of them. We let the final judgment on the reader of this chapter, since
the author of the tests have no deep knowledge of statistics. However we feel
that from these tests all of the generators proved their quality, and it’s on the
user, which of them will want to use in his/her work. The tests of uniformity
showed that Unra generator may have problems with uniform distribution, any-
way it seems to be sufficient generator of random number sequences used in
computations in Cecile software.

9 References

e Dufresne, J.L, et al “Inverse Gaussian distribution”

e Press, W.H., Teukolsky, S.A. 1992, “Numerical Recipes in Fortran”, Cam-
bridge University Press

e MacKeown, P.K. 1997, “Stochastic Simulation in Physics”, Springer

e Page, C.G 1995, “Proffesional Programmer’s Guide to Fortran 77”7, Internet
Distribution

e NAG Fortran Library Manual Mark 15
e Hottel, H.C., Sarofim, A.F. 1967, “Radiative transfer”, McGraw-Hill
e Knuth, D.E.1981, The Art of Computer Programming, Vol.2, Menlo Park

51

