
 

 
 
 

CRANFIELD UNIVERSITY 
 
 
 
 
 
 

Mathieu Farges 
 
 
 
 

DYNAMICS OF FLUIDIC ENERGY DEVICES (DFED) 
 

ASSIGNMENT 
 
 
 
 
 
 
 

MSc Renewable Energy Engineering 
 
 
 
 
 

Academic Year: 2014 - 2015 
 
 
 
 

Module Leader:  Dr Takafumi Nishino 
 

October 2014 





1 

Nomenclature 

a axial induction factor 

B Number of blades of rotor 

BA Array blockage ratio 

BG Global blockage ratio 

BL Local blockage ratio 

c Chord length (m) 

CD Drag coefficient 

CL Lift coefficient 

CP Power coefficient 

CT Thrust coefficient 

p Local pressure (Pa) 

r Distance from the hub (m) 

S Rotor’s swept area (m²) 

U Upstream wind speed (m/s) 

u2 Wind speed near the rotor (m/s) 

 

Greek symbols 

ρ Density (kg/m3) 

φ Angle of relative wind (rad) 
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1.  INTRODUCTION 

Since the amount of energy extractable from a flow is proportional to the density 

of the fluid, tidal energy can be considered as a promising way to get clean and 

sustainable energy. Indeed, sea water is about thousand times denser than air 

and tidal current is more regular than wind current, which lead to consider tidal 

energy at least as credible as wind energy. 

Tidal turbines cannot be simply considered as “under water wind turbines”. They 

are often installed in shallow water, in a limited lagoon, and many turbines are 

placed close together. Thus, the tidal turbines cannot be considered as placed in 

a wide space: interaction between turbines and spatial boundaries are not 

negligible. Garrett and Cummins (2007) [1] have shown that a “blockage effect” 

increases the extractible power when the rotor swept area becomes close to the 

cross-sectional area of flow passage. 

The objectives of this report are to explain the influence of the blockage effect on 

the performance of a single turbine in a water channel, and then in an array of 

several turbines in a wider water channel. 

 

2.  ANSWERS TO THE QUESTIONS 

A.  Single turbine in a water channel 

A.1 

In order to estimate the flow loads in a turbine, we need to define several 

coefficients: 

 CT is the thrust coefficient, defined as : 

𝐶𝑇 =
𝑇ℎ𝑟𝑢𝑠𝑡

1
2

𝜌𝑈²𝑆
  [𝑒𝑞. 1] 
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where, Thrust is the force perpendicular to the rotor plane, U is the upstream 

flow speed, ρ is the mass density of the flow, and S is the rotor’s swept area. 

 CP is the power coefficient, defined as : 

𝐶𝑃 =
𝑃𝑜𝑤𝑒𝑟

1
2 𝜌𝑈3𝑆

    [𝑒𝑞. 2] 

where, Power is the power extracted by the rotor due to the torque force (W). 

In order to increase the energy yield of a turbine, one have to increase its power 

coefficient CP. 

 a is the induction factor, defined as : 

𝑎 =
𝑈 − 𝑢2

𝑈
  [𝑒𝑞. 3] 

where, U is the upstream wind speed, and u2 the wind speed near the rotor, as 

shown in the figure 1 below: 

 

Figure 1 – Flow velocity in a turbine streamtube 

The induction factor a can be seen also as a “perturbation factor”, since it 

indicates how the velocity decreases through the turbine: 

𝑢2 = 𝑈 ∗ (1 − 𝑎)    [𝑒𝑞. 4] 
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We will show in the section below that the value of CP cannot be more than a 

certain limit. 

Given the streamtube of figure 1, because the Bernoulli function is constant 

between 1 and 2, and between 3 and 4, we can write: 

𝑝1 +
𝜌𝑈2

2
= 𝑝2 +

𝜌𝑈2(1 − 𝑎)²

2
    [𝑒𝑞. 5] 

𝑝3 +
𝜌𝑈²(1 − 𝑎)2

2
= 𝑝4 +

𝜌𝑢4²

2
    [𝑒𝑞. 6] 

And 𝑢4 = 𝑈(1 − 2𝑎)   [𝑒𝑞. 7]  [reference 2] 

Then 𝑝2 − 𝑝3 = 2𝜌𝑈2𝑎(1 − 𝑎)   [𝑒𝑞. 8]  

And the power extracted is: 

𝑃𝑜𝑤𝑒𝑟 = (
𝜌𝑈3𝑆 

2
) ∗ 4𝑎(1 − 𝑎)²  [𝑒𝑞. 9] 

Thus 

𝐶𝑃 = 4𝑎(1 − 𝑎)²  [𝑒𝑞. 10] 

The maximum value of CP is achieved at a = 1/3, and is equal to 16/27. 

Considering this so called “actuator disk theory”, when the channel’s cross-

sectional area is much larger than the rotor’s swept area,  

𝐶𝑃𝑚𝑎𝑥 = 16/27  [𝑒𝑞. 11] 

This maximum value of 16/27 for CP is called the “Betz limit”. 
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A.2 

Here, we do not consider that the channel’s cross-sectional area is much larger 

than the rotor’s swept area anymore.  

The local blockage ratio BL defines how close the channel’s cross-sectional 

area and the rotor’s swept area are: 

𝐵𝐿 =
𝑡𝑢𝑟𝑏𝑖𝑛𝑒′𝑠 𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
     [𝑒𝑞. 12] 

 

Garrett and Cummins (2007) have demonstrated how this local blockage ratio 

BL affects the maximum power coefficient of an ideal actuator disk [1]: 

𝐶𝑃𝑚𝑎𝑥 =
16

27
∗ (1 − 𝐵𝐿)−2     [𝑒𝑞. 13] 

When the channel’s cross-sectional area is close to the rotor’s swept area, not 

only the kinetic energy is extracted: but also potential energy from the flow. That 

is why the maximum power coefficient CPmax of a turbine increases when BL 

increases, as one can easily see with equation 13. 

Thus, the local blockage ratio BL influences the relation between the induction 

factor a, and the coefficients CT and CP: 

 When BL becomes higher, the value of CT increases for a given value of 

a ; 

 When BL becomes higher, the value of CP increases for a given value of 

a.  

 As the value of BL increases, the maximum value of CP is achieved at 

higher values of a (as shown in the table below). 
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Table 1 - Influence of BL in the relation between CP and a 

BL CPmax Value of a for CPmax 

0.1 0.73 0.40 

0.2 0.93 0.45 

0.3 1.21 0.50 

0.4 1.64 0.55 

 

Figures 2 and 3 in the appendix represent “CT versus a” and “CP versus a” graphs 

for different values of BL, in which one can appreciate the influence of BL in those 

relations. 

  

A.3 

The results achieved above can lead to a discussion about the optimal design of 

a turbine rotor when it operates at high blockage conditions (BL =0.4 for example). 

The aim here is to achieve a CP value as high as possible for a given BL. 

As BL is fixed, we cannot talk about changing the length of the blades in our 

discussion. Therefore, only very specific criteria derived from the high blockage 

condition are considered. 

We can see in figure 3 that CP reaches a maximum value for a specific value of 

the induction factor a. The value of the induction factor which corresponds to the 

maximum CP increases when BL increases. This leads to consider the induction 

factor a as an optimization criteria. 

For each value of BL, we can know the optimum value of a. The problem is: how 

to achieve this value of a in the rotor design? The axial induction factor can be 

changed by varying the chord length of the blade and the number of blades [4]. 
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Let us consider some extreme cases. For zero blades or a zero value of chord 

length, one can easily see that there is no perturbation of the flow, thus a = 0. For 

an infinite number of blade or a very high chord length, the flow cannot pass 

through the turbine, and there is no velocity after this disk barrier, thus a = 1. 

From those extreme cases, one can assume that, in order to increase a, we can 

increase the number of blade and/or the chord length. 

However, in order to reach the optimum value of a, an analytical expression of a 

is required. This kind of relation is not commonly given in the literature, and it is 

not easy to find one. Here is one from A. Sharifi and M.R.H. Nobari [5] : 

  

[eq. 14] 

 

where, c is the chord length, B the number of blades, r the distance from the hub, 

φ the angle of relative wind, Cl and Cd the lift and drag coefficients. 

From this equation, we can see that, when the number of blades or the chord 

length increases, the value of a increases. From Table 1, we know that the 

optimum value of a (induction factor) slightly increases when BL becomes higher. 

This leads to the conclusion that in order to achieve high CP value, we should 

increase the number of blades and/or the chord length of the turbine.  

As a first approximation, from the equation 14, it seems that reducing the angle 

of relative wind φ will roughly also lead to increasing a. Since the angle of relative 

wind φ is the sum of the section pitch angle and the angle of attack, a lower φ 

can mean (for the design) a less twisted blade, which can ease the 

manufacturing process.  

However, all these conclusions have to be regarded with caution, as lift and drag 

coefficients can be linked themselves to the induction factor, and because a 
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greater number of blades or chord length can lead to undesirable interference 

between the blades themselves. 

A better way to optimize CP may be to use a BEM (Blade element momentum) 

theory algorithm in order to evaluate the value of the induction factor a. For a 

given airfoil, we can calculate a for different values of chord length and/or number 

of blades. By plotting a 3D surface, with “chord length versus number of blades” 

in the horizontal plane, and the induction factor value in the vertical axis, one can 

find the most appropriate couple of (chord length , number of blade) in order to 

reach the desired value of a. 

 

Figure 4 – Number of blade versus chord length versus a 

 

A software can run this procedure for each value of r, using a mean value of chord 

length, in order to choose the number of blades. Once the number of blade is 

fixed, the procedure computes the appropriate chord length for each value of r. 

Since we are looking for a value of a greater than 0.4, we also have to consider 

the Glauert correction in the BEM calculations. 
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B.  Multiple turbines in a wide water channel 

B.1 

When we consider not only an isolated turbine but a row of several horizontal-

axis turbines placed in a wide water channel, the local blockage ratio BL alone is 

not adequate to describe the blockage effect. We need three ratios: 

 The local blockage ratio BL is defined in the same way as before : 

𝐵𝐿 =
𝜋𝑑2/4

(𝑑 + 𝑠) ∗ ℎ
     [𝑒𝑞. 15] 

 

 The array blockage ratio BA represents the length ratio of the array in the 

channel : 

𝐵𝐴 =
𝑛 ∗ (𝑑 + 𝑠)

𝑤
     [𝑒𝑞. 16] 

 

 

 The global blockage ratio BG defines the surface ratio of the turbine array 

in the channel : 

𝐵𝐺 =
𝑛 ∗ 𝜋𝑑2/4

ℎ ∗ 𝑤
     [𝑒𝑞. 17] 

 

 

Figure 5 – Multiple turbine array 

 

We also need to introduce two scale of flows: 

 the device-scale flow corresponds to the streamtube passing through 

one turbine of the array 
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 the array-scale flow corresponds to the streamtube passing through the 

whole array of turbines as if it was a single large device 

 

 

Figure 6 – Array scale and device scale flows (adapted from “Two-scale 

dynamics of flow past a partial cross-stream array of tidal turbines”, T. Nishino, 

R.H.J. Willden (2013), J. Fluid Mech.) 

 

The scale separation assumption considers that the Garrett-Cummins (2007) 

model can be applied to the device-scale flow and the array-scale flow. 

This assumption is satisfied when the number of turbine is large enough. More 

than 10 turbines can be considered as “large enough”. 
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B.2 

Under the scale separation assumption described above, one can compute the 

upper limit of the power generated by a single row of a number of horizontal-axis 

turbines placed in the middle of a wide water channel. 

By plotting CPmax versus BL, one can find the maximum value of CPmax when the 

global blockage ratio BG =0. The results are given in Figure 7. 

In those figures, BL vary from BG to π/4, as BL cannot be smaller than BG by 

definition, and as the value of BL here cannot be more than “the area of a circle 

inscribed in a square under the area of this square”, which is equal to π/4. 

When BL equal BG, it corresponds to a full fence array.  

Figures 8 and 9 show the same type of plot than Figure 7, but with different values 

of BL. A summary of the influence of BG is given in Table 2.  

 

The Matlab code given in the appendix computes, for a given value of BG, the 

“CPmax versus BL” plot. The values of BL considered in the plot are from BG to Pi/4 

(only values with physical meaning). The plot indicates the upper limit of CPmax 

and the specific value of BL to achieve it.  

 

Table 2 – Influence of BG in the relation between CPmax and BL 

BG Upper limit of CPmax Value of BL to achieve it 

0.0 0.798 0.41 

0.1 0.954 0.47 

0.2 1.168 0.54 
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3.  CONCLUSIONS 

Tidal energy turbines can be considered as a really promising way to get clean 

and sustainable energy, as its power coefficient can be greater than the Betz 

Limit (CPmax = 0.593), up to the Nishino-Willden limit (CPmax = 0.798) for a wide 

channel (BG = 0.0), and even more when turbines get closer to full fence array 

(BG increase). 

For a single turbine, the power coefficient increase when the blockage ratio 

increase. By slightly increasing the number of blades and/or the chord length, 

one can optimize the power extracted by the turbine from the flow. 

For an array of turbines, the upper limit of CPmax increase when BG increase, and 

can be reached for a specific value of BL. 
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APPENDIX 

The Matlab code is given below: 

% two-scale blockage effect % 

  
%initialisation 
B_g=0.00001; %B_g can't be zero 
gm_l=linspace(0,1,1000); 
gm_a=linspace(0,1,1000); 
M=[]; %matrix of Cpmax 
X=[]; %matrix of B_l 

  
%first loop 

 
kmax=79*(1-B_g); % B_L can't be higher than Pi/4=0.786 

 
for k=1:kmax 

 
B_l=B_g+k*0.01 % The local blockage B_l must not be smaller than the 

global blockage B_l 
B_a=B_g/B_l; % B_g=B_l*B_a 

  
X=[X B_l]; % store the value of B_l for each iteration 

  

  
for i=1:1000 
a_l(i)=1-((1+gm_l(i))/((1+B_l)+sqrt((1-B_l)^2+B_l*(1-

1/gm_l(i))^2))); 
Ct_l(i)=(1-gm_l(i))*(((1+gm_l(i))-(2*B_l)*(1-a_l(i)))/(1-(B_l*(1-

a_l(i))/gm_l(i)))^2); 

  
for j=1:1000 
a_a(j)=1-((1+gm_a(j))/((1+B_a)+sqrt((1-B_a)^2+B_a*(1- 

1/gm_a(j))^2))); 
Ct_a(j)=(1-gm_a(j))*(((1+gm_a(j))-(2*B_a)*(1-a_a(j)))/(1-(B_a*(1-

a_a(j))/gm_a(j)))^2); 
Ct_a2(i,j)=((1-a_a(j))^2)*B_l*Ct_l(i); 
e(i,j)=abs(Ct_a2(i,j)-Ct_a(j)); 
end 

  
[min_err,p]=min(e(i,:)); % to find the a_a value that gives 

"Ct_a2=Ct_a" 
Cp_l(i)=(1-a_l(i))*Ct_l(i); 
Cp_g(i)=((1-a_a(p))^3)*Cp_l(i); 
a_g(i)=1-(1-a_l(i))*(1-a_a(p)); 

  
end 

  
Cpmax=max(Cp_g) ; 

  
M=[ M Cpmax ]; % store the value of Cpmax for each iteration 

  
end 
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[ Cplim ind ] = max(M) ; % max Cp_max (and the index location of it 

in the matrix) for the given B_g 

  
Cplim % displays the max Cp_max 

 
BL_opt=X(ind) % the specific value of BL to achieve the upper limit 

of Cp_max 

  
figure 
plot(X,M) 
xlabel('B_L') 
ylabel('Cp_m_a_x') 
hold on;  
 plot(BL_opt,Cplim,'ks','markerfacecolor',[0 0 0]); 
 text(BL_opt,Cplim-0.02,['Max: ', num2str( Cplim ), ' for BL: ', 

num2str( BL_opt ) ] ) ; % indicates the optimum in the plot 

 

 

 

 

Figure 2 – CT versus a for different values of BL 
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Figure 3 – CP versus a for different values of BL 

 

Figure 7 – CPmax versus BL for BG = 0.0 
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Figure 8 – CPmax versus BL for BG = 0.1 

 

 

Figure 9 – CPmax versus BL for BG = 0.2 


